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Program

Wednesday, June 6

9:20 – 9:30 Opening

9:30 – 10:40 Chair: Masakiyo Miyazawa
• Nigel Bean: Spatially-coherent uniformization of a stochastic
fluid model to a quasi-birth-and-death process
• Beatrice Meini: Algebraic Riccati equations associated with
M-matrices: theoretical results and algorithms

Break

11:00 – 12:10 Chair: Alexander N. Dudin
• Sophie Hautphenne: Extinction probabilities of branching processes
with infinitely many types
• Miklos Telek: Extension of some MAP results to transient MAPs
and Markovian binary trees

Lunch

14:00 – 15:10 Chair: Nigel Bean
• David Meisch: Parameter estimation via the EM algorithm for a
subclass of MVPH
• Giang Nguyen: Phase-Type Poisson distributions as an extension of
Phase-Type distributions

Break

15:30 – 16:40 Chair: Miklos Telek
• Maria Govorun: Valuation of long-term medical contracts
• Federico Poloni: Model estimation through matrix equations in
financial econometrics

17:00 – 19:00 Welcome Reception (in Villa Toeplitz)
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Thursday, June 7

9:00 – 10:10 Chair: Peter Taylor
• Bo Friis Nielsen: On the relationship between classes of multivariate
distributions with rational moment generating function
• Peter Buchholz: Numerical analysis of rational processes beyond
Markov chains

Break

10:30 – 12:15 Chair: Dario Bini
• Yuanyuan Liu: Poisson’s equation for discrete-time
quasi-birth-death processes
• Muhsin Can Orhan: On the numerical solution of Kronecker-based
infinite level-dependent QBDs
• Peter Taylor: Another look at level-phase independence in GI/M/1
type Markov chains

Lunch

14:00 – 15:10 Chair: Attahiru Sule Alfa
• Luz Judith R. Esparza: On size-biased discrete phase-type
distributions
• Mogens Bladt: The estimation of discretely observed Markov jump
processes and phase-type distributions

Break

15:30 – 18:30 Excursion to Sacro Monte di Varese

19:00 – 22:00 Conference Dinner
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Friday, June 8

9:30 – 10:40 Chair: Udo Krieger
• Qi-Ming He: Optimal (r,Q) policy for an inventory-production system
• Alexander N. Dudin: Optimization of guard channel policy in
cellular mobile networks with account of retrials

Break

11:00 – 12:10 Chair: Qi-Ming He
• Attahiru Sule Alfa: Some useful results for the MAP/PH/1 system
with PH vacations
• Valeriy Naumov: Matrix generalization of Erlang’s loss formula and
its properties

Lunch

14:00 – 15:10 Chair: Guy Latouche
• Malgorzata O’Reilly: Loss rates for stochastic fluid models
• Masakiyo Miyazawa: Markov modulated reflecting fluid process on a
multidimensional orthant: Stability and rough asymptotics of the
stationary distribution

Closing

4



Abstracts
I Wednesday, 9:30

Spatially-coherent Uniformization of a Stochastic Fluid Model to a
Quasi-Birth-and-Death Process1

Nigel G. Bean*, Małgorzata M. O’Reilly

The first paper that used matrix-analytic methods to consider a Markovian
stochastic fluid model (SFM) [3], proposed one way of mapping a SFM to a
Quasi-Birth-and-Death process (QBD). However, that mapping was not spa-
tially coherent (in the sense that the level of the QBD directly represented the
level of the SFM). Instead, it was derived with the specific purpose of allow-
ing algorithmic evaluation of a key matrix (Ψ) using known QBD techniques.
In later work, [1],this mapping was further developed in such a way that the
workload in the queue (not the level of the queue) represented the level of the
SFM in an appropriate limit.

In this paper we provide a natural mapping that is spatially coherent since
the continuous level in the SFM has a natural correspondence to the discrete
level in the QBD process, and so the QBD can be used as a direct approxima-
tion of the original SFM. We treat the unbounded as well as bounded cases
and illustrate the theory with numerical examples.

The significance of these results goes beyond the development of new ways
of approximating the performance measures of a SFM. In particular, we are
currently extending these results to the discretization of the driving fluid in
a stochastic fluid-fluid model [2]. This will allow for efficient matrix-analytic
methods based analysis of this important, but difficult to treat, class of models.

Let {(ϕ(t)), t ≥ 0} be an irreducible continuous-time Markov Chain (CTMC)
with a finite state space S = {1, 2, . . . , n} and infinitesimal generator T =
[Ti,j]. Let {(ϕ(t), X(t)), t ≥ 0} be an SFM with phase variable ϕ(t), level
variable X(t) and real rates ci for all i ∈ S. Assume initially that X(t) ∈
(−∞,+∞) so that when ϕ(t) = i, then the rate at which the level is changing
is always ci.

For a given positive ∆x, we introduce discrete levels k = 0,±1,±2, . . .
corresponding to the continuous-level intervals [k∆x, (k+1)∆x) in the original

SFM. For all i ∈ S, let ϑi(∆x) =
|ci|
∆x

.
Now we construct the spatially coherent discrete-time QBD

{(ϕ̄∆x(n), X̄∆x(n)), n ≥ 0} by connecting the phase and level of this QBD to
the state of the SFM at arrival times of a Poisson process with an appropriately
chosen parameter, following the standard uniformization approach [4]. Choose
γ(∆x) ≥ maxi {λi + ϑi(∆x)} and consider the Poisson process {N(t), t ≥ 0}
with parameter γ(∆x).

The initial condition is (ϕ̄∆x(0), X̄∆x(0)) = (ϕ(0), bX(0)
∆x
c). Then, by the

standard theory of Markov Chains, for example [4], assuming that an arrival
in N(·) occurs at time t and that (ϕ̄∆x(N(t−)), X̄∆x(N(t−))) = (i, k), then

1This research is supported by the Australian Research Council through Discovery
Project DP110101663.
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• with probability p1 = λi/γ(∆x) it is marked as a type-1 arrival and the
process moves to some phase j 6= i without a change in discrete level so
that a transition from (i, k) to (j, k) occurs (where j 6= i is chosen with
probability Ti,j/λi),

• with probability p2 = ϑi(∆x)/γ(∆x) it is marked as a type-2 arrival and
the process does not change phase but changes level so that a transition
from (i, k) to (i, k + 1) occurs if ci > 0, or a transition from (i, k) to
(i, k − 1) occurs if ci < 0, or

• with probability p3 = 1− p1− p2 it is marked as a type-3 arrival and the
process remains in state (i, k).

This construction yields a discrete-time QBD, but by incorporating the
above Poisson process {N(t), t ≥ 0} directly back into it, we develop the
spatially-coherent continuous-time QBD {(ϕ∆x(t), X∆x(t)), t ≥ 0}.

We formalize this idea in our paper and show that the transition func-
tion of the SFM (at the resolution of ∆x) can be calculated from that of the
continuous-time QBD following an argument similar to the usual uniformiza-
tion argument. Hence, this QBD is a good approximation for the SFM and
captures all the basic dynamics correctly, up to the resolution allowed by the
particular choice of ∆x. We then show that, in the limit as ∆x → 0+, the
statistical properties of such a QBD converge to the statistical properties of
the SFM and that the key matrix Ψ also emerges from the QBD calculations
in this limit.

References

1. S. Ahn and V. Ramaswami. Transient analysis of fluid flow models via
stochastic coupling to a queue. Stochastic Models, 20(1):71–101, 2004.

2. N. G. Bean and M. M. O’Reilly. A stochastic fluid model driven by
an uncountable-state process, which is a stochastic fluid model itself:
Stochastic fluid-fluid model. Submitted, 2012.

3. V. Ramaswami. Matrix analytic methods for stochastic fluid flows. In
Pro- ceedings of the 16th International Teletraffic Congress, pages 1019–
1030, 1999.

4. S. M. Ross. Introduction to Probability Models. Elsevier, New York,
2007.
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I Wednesday, 10:05

Algebraic Riccati equations associated with M-matrices:
theoretical results and algorithms

Beatrice Meini*

Nonsymmetric algebraic Riccati equations (NARE) are nonlinear matrix
equations of the kind C + XA + DX −XBX = 0, where the unknown X is
an m × n matrix and A, B, C, D are matrices of appropriate size. We focus
the attention on NAREs whose block coefficients are such that the matrix

M =

[
A −B
C D

]
is either a nonsingular M-matrix, or a singular irreducible M-matrix. This class
of equations arises in a large number applications, ranging from fluid queues
models to transport theory. The solution of interest is the minimal nonnegative
one, i.e., the nonnegative solution Xmin such that Xmin ≤ X for any other non-
negative solutionX. In this talk we present theoretical properties of the NARE
and several numerical methods for the computation ofXmin. Particular empha-
sis is given to the properties of the invariant subspaces, and to the techniques
used to trasform the eigenvalues of a pencil, keeping unchanged the invariant
subspaces. Concerning numerical methods, special attention is addressed to
structure-preserving iterative algorithms, having quadratic convergence; con-
nections between the cyclic reduction algorithm and the structure-preserving
doubling algorithm (SDA) are pointed out.

I Wednesday, 11:00

Extinction probabilities of branching processes with infinitely
many types

Sophie Hautphenne*, Guy Latouche and Giang Nguyen

In this work, we consider multitype branching processes with infinitely
many types and we investigate algorithmic methods to compute the infinite
vector of conditional extinction probability given the type of the initial particle.
Drawing our inspiration from matrix analytic methods, we propose several
converging sequences with probabilistic interpretation, and we discuss the limit
of these sequences: some of them converge to the extinction probability of the
process, while one converges to another quantity which we interpret as the
probability that all types of particles eventually become extinct.

We also discuss extinction criteria, which bring into play the convergence
norm of the infinite mean progeny matrix.

7



I Wednesday, 11:35

Extension of some MAP results to transient MAPs
and Markovian binary trees

Sophie Hautphenne and Miklos Telek*

In this work we extend previous results on moment-based characterization
of stationary Markovian Arrival Processes (MAPs) (Bodrog, Horváth, and
Telek [3]), and minimal representation of Rational Arrival processes (RAPs)
(Buchholz and Telek [4]) to transient Markovian Arrival Processes (TMAPs)
and Markovian binary trees (MBTs).

We show that the number of moments that characterize a non-redundant
TMAP of size n is n2+2n−1, and a non-redundant MBT of size n is n3+2n−1.
We provide a non-Markovian representation for both processes based on these
moments. Note that any non Markovian representation can be transformed
into a Markovian representation by adapting the algorithm developed for sta-
tionary MAPs in Telek and Horváth [1].

Next, we discuss the minimal representation of TMAPs and MBTs. In both
cases, the minimal representation, which is not necessarily Markovian, can be
found using different adaptations of the STAIRCASE algorithm presented in
[4].

Finally, we investigate canonical representations for TMAPs and MBTs of
order 2. Different Markovian canonical forms exist for both processes, but to
the best of our knowlegde, a formal classification of TMAPs(2) and MBTs(2)
according to their canonical form(s) seems even harder to find than in the
stationary MAP(2) case (Bodrog et al. [2]).

References

1. M. Telek and G. Horváth. A minimal representation of markov arrival
processes and a moments matching method. Performance Evaluation,
64(9-12):1153–1168, Aug. 2007.

2. L. Bodrog, A. Heindl, G. Horváth, and M. Telek, A markovian canonical
form of second-order matrix-exponential processes, European Journal of
Operation Research, vol. 190, pp. 459–477, 2008

3. L. Bodrog, A. Horváth, and M. Telek. Moment characterization of ma-
trix exponential and Markovian arrival processes. Annals of Operations
Research, 160:51–68, 2008.

4. P. Buchholz and M. Telek. On minimal representation of rational arrival
processes. Annals of Operations Research, 2011. DOI 10.1007/s10479-
011-1001-5.
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I Wednesday, 14:00

Parameter estimation via the EM algorithm for a subclass of
MVPH

Mogend Bladt, David Meisch* and Bo Friis Nielsen

The Expectation-Maximization (EM) algorithm is well-known for fitting
phase-type distributions to given univariate data. In several fields the infor-
mation received from data is often multivariate and correlated. Our goal is to
fit a subclass of multivariate phase-type distributions (MVPH) to given mul-
tivariate data. A first approach is to fit a bivariate exponential distribution,
more specifically a Kibble distribution using an adaption of the EM algorithm.

A Kibble distribution (also known as Jensen’s, Gaver’s or Downton-Moran’s
distribution), is a bivariate exponential distribution. It can be used to model
two components receiving shocks occurring in independent Poisson processes
which need a bivariate geometric distributed number of shocks until failure of
the components. This has e.g. an application in reliability theory.

Kotz, Balakrishnan and Johnson list several methods proposed by various
authors to estimate the parameter of this distribution in their book “Contin-
uous Multivariate Distributions”. Additional approaches have been published.
To our knowledge it has not been previously tried to use an EM algorithm to
estimate the parameters of a Kibble distribution.

In order to determine the performance of our EM algorithm, we have cal-
culated parameter estimates using the EM algorithm as well as several other
methods using simulated data, saving all relevant information and comparing
the estimates to our original generator and the simulated data. A well-known
characteristic of the EM algorithm is that it always converges, and in this
special case the calculation of the estimates converges exponentially.

I Wednesday, 14:35

Phase-Type Poisson distributions as an extension of Phase-Type
distributions

Sophie Hautphenne, Guy Latouche and Giang Nguyen*

Phase-Type Poisson distributions may be examined from different perspec-
tives. Matrix-form Poisson distributions were first introduced in Wu and Li [2]
as one generalization of Panjer distributions, and subsequently analyzedin Siaw
et al. [1]. The main focus of these two papers was to extend Panjer’s algorithm
— an efficient recursive procedure for evaluating compound distributions, as-
suming that the number of summands follows a Panjer distribution—to more
general families of distributions, including the Matrix-form Poisson distribu-
tions.

Here, we show that when certain positivity constraints are satisfied, these
Matrix-form Poisson distributions have a physical interpretation as extensions
of Phase-Type distributions. We refer to these positive Matrix-form Poisson
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distributions as Phase-Type Poisson distributions, and use our physical inter-
pretation to construct an EM algorithm for parameter estimation.

References

1. K. K. Siaw, X. Wu, D. Pitt, and Y. Wang. Matrix-form recursive eval-
uation of the aggregate claims distribution revisited. Anals of Actuarial
Science, 5(2):163–179, 2011.

2. X. Wu and S. Li. Matrix-form recursions for a family of compound
distributions. ASTIN Bulletin, 40:351-368, 2010

I Wednesday, 15:30

Valuation of long-term medical contracts

Maria Govorun*, Guy Latouche and Stephane Loisel

In the present work we use phase-type methods to examine the discounted
future losses of a long-term medical care contract.

Many life insurance companies are exposed to risks related to long-term
medical contracts. The management of these risks is a complicated problem
because it involves questions of a long-and a short-term perspective. For a
company selling such a contract, the long perspective question would be to
correctly estimate the present value of all its potential losses. In a short term
perspective the company needs to satisfy regulatory requirements that usually
impose restrictions on a short-time basis, which means that the risks have to
be calculated with a good precision at any time.

For a long-term horizon we define two discrete time models for the present
value that are based on different assumptions for the treatment costs. In
the first model, the treatment costs of each year of life are independent and
identically distributed random variables. Thus, they do not depend on aging
of the individual. In our second model, we assume that the treatment costs
depend on the health state of the individual and they are defined by a Markov
reward process.

In order to meet regulatory requirements on a short term horizon we de-
velop a continuous time model, where the present value of losses is described
by a fluid queue.

For the remaining lifetime of an individual we use a continuous phase-
type model introduced by Lin and Liu in 2007, where a Markov chain is used
to model human mortality and where the phases represent health states of
individuals. This enables us to obtain algorithmic procedures to compute the
density and the distribution function of the present value.

We use the models to perform different stress tests. For instance, tests
with respect to mortality rates allow us to study the impact of an increased
lifetime spent in bad health states for which medical treatments are the most
expensive.
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I Wednesday, 16:05

Model estimation through matrix equations in financial
econometrics

Federico Poloni* and Giacomo Sbrana

I would like to present a recent project involving applied probability and
matrix equation in a novel way.

The GARCH(1,1) process [Engle, ’82, Bollerslev, ’86] is a stochastic process
that models the conditional (co)variance of financial time series. Namely, a
GARCH(1,1) is a sequence of the form yt = H

1/2
t εt, t = 1, 2, . . . , T , where the

εt ∈ Rd are i.i.d. with mean 0 and variance I and the conditional variance
Ht ∈ Rd×d is given by a linear affine function of Ht−1 and yt−1y

T
t−1.

Estimating the parameters of this affine function from a number of obser-
vations of the vector yt is a challenging task, since the data essentially consist
of “noise” only. For this purpose, the standard choice is a maximum-likelihood
estimator obtained through a general-purpose quasi-Newton optimization tech-
nique. This method is often computationally intensive and slow to converge,
especially when d increases.

Generalizing an approach by [Linton, Kristensen ’06] for the univariate
(scalar) GARCH(1,1), we suggest a new estimation strategy for the GARCH(1,1)
parameters using the solution of a palindromic matrix equation Γ1X

2 +Γ0X+
ΓT1 ; here, Γ0 = ΓT0 and Γ1 are d(d+1)/2×d(d+1)/2 matrices depending on the
moments of yt only, and can thus be estimated easily from the observations.

While this estimator is not as accurate as the maximum-likelihood one, it is
much faster to compute and can be refined using a simple fixed-point iteration.

I Thursday, 9:00

On the relationship between classes of multivariate distributions
with rational moment generating function.

Mogend Bladt and Bo Friis Nielsen*

The class of multivariate distributions with rational moment generating
function contains an important sub-class of distributions that can be inter-
preted as different linear rewards earned under the sojourns in the transient
states of a finite terminating Markov chain. Until now it has been an open
question whether there exist distributions with rational moment generating
function that do not belong to this subclass. We provide an example settling
that at least in the case of general real rewards the class is a strict sub-class.
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I Thursday, 9:35

Numerical Analysis of Rational Processes Beyond Markov Chains

Peter Buchholz*

If one skips the probabilistic interpretation of transitions in PH distribu-
tions and MAPs the more general classes of ME distributions [6] and RAPs
[1] can be defined. Although, these models are known for some time they
have rarely been used in stochastic models since it was unclear whether the
resulting models are valid stochastic process and if they are stochastic pro-
cesses can be analyzed and it is also unclear whether a given set of matrices
and vectors describe a valid process. Only recently work has been started
towards a more general use of these models in a larger setting. In particular
it has been shown that PH distributions and MAPs have an up to similarity
transformations unique minimal representation as an ME distribution or RAP
[4] and that ME distributions and RAPs can be used in stochastic models like
SPNs [3] or SANs [5] under some restrictions and a valid stochastic process
denotes as a rational process (RP) results from the model which in principle
can be analyzed numerically. Furthermore, it has been proved that matrix
analytic methods are still valid and applicable if ME/RAPs are used instead
of PH/MAPs [2].

Even if it is known that the analysis of RPs is in principle similar to the
analysis of Markov processes, many details are open. Due to the missing
stochastic interpretation in RPs, the rates between states or values in a station-
ary or transient state vector can be negative in RPs which for example implies
that established numerical methods for Markov processes like uniformization
for transient analysis or SOR for stationary analysis do not work for RPs.

In the talk we give an overview of RPs and introduce first computational
methods to compute the stationary state vector of RPs with finite state spaces.
From the stationary state vector quantitative results like sojourn times or
throughputs can be derived. It is shown that by exploiting the model structure
of the model the state space of an RP can be decomposed such that the sum
of elements in a subset is a probability and the values over all subsets form a
probability distribution. According to the decomposition of the state space a
block structure on the transition matrix with non-singular diagonal blocks can
be defined. This and some other features of the decomposition can be exploited
to define computational methods for RPs. The talk introduces some of those
methods and some experimental results indicating that the use of RPs rather
than Markov processes can be beneficial in several situations. Furthermore, it
lists some open research problems in the area.

References

1. S. Asmussen, M. Bladt. Point processes with finite-dimensional con-
ditional probabilities. Stochastic Processes and Their Application 82
(1999), 127-142.

2. N. Bean, B. F. Nielsen. Quasi-birth-death processes with rational arrival
process components. Stochastic Models 26 (3), 2010, 309-334.
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3. P. Buchholz, M. Telek. Stochastic Petri Nets with Matrix Exponential
firing times. Performance Evaluation 67 (12), 2010, 1373-1385.

4. P. Buchholz, M. Telek. Rational processes related to communicating
Markov processes. Journal of Applied Probability 49 (1), 2012, 40-59.

5. P. Buchholz, M. Telek. Rational automata networks. INFORMS Journal
on Computing (to appear).

6. L. Lipsky. Queueing Theory. Springer 2008.

I Thursday, 10:30

Poisson’s equation for discrete-time quasi-birth-death processes

Sarah Dendievel, Guy Latouche and Yuanyuan Liu*

In this talk, we will present our recent our results on Poisson’s equation for
positive recurrent, irreducible and aperiodic discrete-time QBD processes with
finite phases. The solutions of Poisson’s equation are expressed explicitly in
terms of both the functionals of the first hitting times and the deviation matrix.
The link between the solution of Poisson’s equation and central limit theorem,
perturbation analysis and measure of convergence rates is also investigated.

I Thursday, 11:05

On the numerical solution of
Kronecker-based infinite level-dependent QBDs

Tuǧrul Dayar and Muhsin Can Orhan*

Infinite level-dependent quasi-birth-and-death processes (LDQBDs) can be
used to model Markovian systems with countably infinite multi-dimensional
state spaces. Recently it has been shown that sums of Kronecker products can
be used to represent the nonzero blocks of the infinitesimal generator matrix
underlying an LDQBD. Then the challenge in the matrix analytical solution is
to compute conditional expected sojourn time matrices of the LDQBD under
low memory and time requirements. In this talk, we present results of nu-
merical experiments with a Kronecker-based matrix-analytic solution method
on systems having more than two countably infinite dimensions modeled as
LDQBDs and derive various rules of thumb.

References

1. L. Bright and P.G. Taylor. Calculating the equilibrium distribution in
level dependent quasi- birth-and-death processes. Stochastic Models,
11:497–525, 1995.
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3. T. Dayar, W. Sandmann, D. Spieler, and V.Wolf. Infinite level-dependent
QBD processes and matrix analytic solutions for stochastic chemical ki-
netics. Advances in Applied Probability, 38:1005–1026, 2011.

4. G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Meth-
ods in Stochastic Modeling. SIAM Press, Philadelphia, PA, 1999.

5. M.F. Neuts. Matrix-Geometric Solutions in Stochastic Models. The
Johns Hopkins University Press, Baltimore, MD, 1981.

6. M.C. Orhan. Kronecker-based infinite level-dependent QBDs: Matrix
analytic solution versus simulation. Master’s thesis, Department of Com-
puter Engineering, Bilkent University, 2011.

7. V. Ramaswami and P.G. Taylor. Some properties of the rate operators
in level depen- dent quasi-birth-and-death processes with a countable
number of phases. Stochastic Models, 12:143–164, 1996.

I Thursday, 11:40

Another look at level-phase independence in GI/M/1 type Markov
chains

Guy Latouche, Safieh Mahmoodi and Peter G. Taylor*

It is well-known that, with the stationary distribution π = (π0,π1, . . .)
partitioned according to the levels, a positive-recurrent GI/M/1 type Markov
chain with finitely-many phases and generator of the form

P =


B0 A1 0 0 · · ·
B−1 A0 A1 0 · · ·
B−2 A−1 A0 A1

. . .

B−3 A−2 A−1 A0
. . .

...
... . . . . . . . . .

 ,

has a matrix-geometric stationary distribution defined by πk = π0R̂
k, with R̂

the minimal nonnegative solution of the matrix equation

R =
∞∑
k=0

RkA−k+1,

and where

π0 = π0

∞∑
k=0

R̂kB−k,
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with

π0

∞∑
k=0

R̂k1 = 1.

In [1] we took the matrix sequence {A−k} as given, and showed how to
construct a sequence of boundary matrices {B−k}, so that the stationary dis-
tribution is level-phase independent, that is πk = (1−ρ)ρku for some suitable
ρ ∈ [0, 1] and u. The proof there involved studying the doubly-infinite Markov
chain with generator

T =



. . . . . . . . .

. . . A0 A1 0
A−1 A0 A1 0

A−2 A−1 A0 A1
. . .

. . . . . . . . . . . .


, (1)

censored so that it stays in the nonnegative levels. An adjustment, with an
interesting physical interpretation, had to be made to ensure that the resulting
matrix is conservative.

More recently, we have been asking the same question about GI/M/1 type
Markov chains with infinitely-many phases. For such chains, there can be a
continuum of scalars ρ ∈ [0, 1] and u ∈ `1 for which uR = ρu, and for each of
these, we can employ techniques, similar to those described above, to show that
boundary transitions can be constructed, so that the stationary distribution
of the chain is level phase independent with πk = (1− ρ)ρku.

References

1. G. Latouche and P.G. Taylor, Level-Phase Independence in Processes of
Gi/M/1 Type, Journal of Applied Probability, 37, 984?998, 2000.

I Thursday, 14:00

On size-biased discrete phase–type distributions

Mogend Bladt, Luz Judith R. Esparza* and Bo Friis Nielsen

Observations of certain phenomena may suffer from bias caused by the sam-
pling method by which the data were collected. Situations leading to discrete
weighted distributions include the analysis of family data, the aerial survey in-
volving visibility bias in wildlife ecology, line transect sampling, among others.
In this paper, we analyze some models leading to size-biased discrete phase–
type distributions and matrix–geometric distributions, showing that factorial
moment distributions of these classes remain within their respective classes.
We give explicit discrete phase–type and matrix–geometric representations of
these factorial moment distributions.
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A special and important case is the first factorial moment distribution,
where the probability of selection is proportional to the size of the observation.
A well known situation applying this special case is the inspection paradox from
discrete-time renewal processes.

We discuss the possibility of estimating general moment phase–type distri-
butions via the EM algorithm. Applications with real data on family size and
grain size-distributions using this algorithm are considered.

I Thursday, 14:35

The estimation of discretely observed Markov jump processes and
phase-type distributions

Mogens Bladt*, Bo Friis Nielsen and Luz Judith R. Esparza

We consider one or several independent Markov jump processes of finite
state-space which are observed at discrete times only. We are concerned with
the estimation of the intensity matrix of the underlying continuous process
given this partial information. Classical approaches for dealing with incomplete
information like the EM algorithm and Markov chain Monte Carlo methods will
be employed. In the special case where the Markov jump processes generate a
phase-type distribution, the method is combined with well-known methods for
phase-type estimation. We present a real example from the world of credit risk
rating and a simulated example from survival analysis. Possible extensions to
Markov modulation of the intensities over time will also be considered.

I Friday, 9:30

Optimal (r,Q) Policy for an Inventory-Production System

Qi-Ming He* and Hanqin Zhang

We consider a system consisting of a warehouse and a production facil-
ity. An (r,Q) policy is used for inventory management in the warehouse. A
quantity policy is used for shipment consolidation in the production facility.
More specifically, the inventory-production system (see the figure) is defined
as follows.

1. Customer demands arrive according to a Markov arrival process (MAP)
with a matrix representation (D0, D1).

2. Inventory in the warehouse is reviewed continuously. The warehouse
adopts an (r, q1) policy for its inventory management. That is: whenever
the inventory position reaches r, an order of the amount q1 is placed to
the production facility.
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3. The production facility always has enough resource for production. The
production facility produces one product at a time. The production
time of a product has a phase-type distribution with a PH-representation
(α, T ).

4. Finished products are stored in the production facility first. Once the
number of finished products reaches q2, the whole batch of finished prod-
ucts is shipped together to the warehouse. Note that q2 is a positive
integer.

5. The holding cost per product in the warehouse per unit time is hw,
penalty cost per demand per unit time in the warehouse is pw, the or-
dering cost per order in the warehouse is K, and the holding cost per
product in the production facility per unit time is hs.

By using the matrix-analytic methods, an algorithm is developed for com-
puting the expected system costs. We also explore methods for finding the
policy for inventory management in the warehouse and shipment management
in the production facility that minimizes the expected system costs. A high-
light of the research is the explicit result on the shipment consolidation at the
production facility.

I Friday, 10:05

Optimization of Guard Channel Policy in Cellular Mobile
Networks with Account of Retrials

Valentina I. Klimenok, Alexander N. Dudin* and Chesoong Kim

Importance of the problem of optimal handling the handover calls in wire-
less networks is well-recognized. Small number of channels in a cell of the
network and the competition between calls may create essential problems, es-
pecially for moving users. From a user’s perspective, it is more intolerable
to drop an on-going service, than to block a service that has yet to be es-
tablished. Therefore, with limited bandwidth in a cell, satisfying requests of
on-going (handover) calls is more important than satisfying the requests of the
new calls generating in a given cell. Thus, different policies that should pro-
vide some kind of priority to handover calls over the new calls are elaborated.
Well known is so called Guard Channel Policy which assumes reservation of

17



some part of channels for service of the handover calls. Under such a policy,
optimization problem arises: how many servers should be reserved exclusively
for service of the handover calls. There is a lot of works where such type of
optimization problems has been considered. The main shortcomings of that
considerations are the following imposed assumptions: (i) arrival flows of the
handover and new customers are defined as independent stationary Poisson
arrival processes while arrival flows in modern wireless mobile communication
networks exhibit correlation and high variability of inter-arrival times; (ii) re-
trials are absent or retrial rate from the orbit is constant; (iii) service times of
the handover and new customers are identically distributed; (iiii) system is a
priori stable (ergodic).

In the present work, we consider the model of Guard Channel Policy that
is free of the indicated shortcomings of previous considerations. To this end,
we consider the (N + R)-server queueing system without waiting space. Cus-
tomers of two types arrive to the system according to the Marked Markovian
Arrival Process. We interpret type-1 customers as hand-over customers and
type-2 customers as new customers generated in the given cell. We assume
that handover customers have a priority. This priority is provided by means
of reservation of R servers especially for type-1 customers. Arriving type-1
customer is rejected (dropped) only if all N + R servers are busy. Arriving
type-2 customer is blocked only if at least N servers are busy at its arrival
moment. This customer leaves the system with probability 1 − p, 0 ≤ p ≤ 1.
With complementary probability, p, type-2 customers moves the orbit of in-
finite capacity and retries for the service later on. Each customer staying in
the orbit makes retrials independently of other customers. Inter-retrial time
has exponential distribution with parameter η. If the number of busy servers
at a retrial moment is less than N , the customer occupies a free server and
starts a service. In the opposite case, with probability q, 0 ≤ q ≤ 1, the
customer returns to the orbit or, with probability 1− q, leaves the system (is
lost). Service of type-k customer has exponential distribution with parameter
µk, k = 1, 2.

Using matrix analytic technique we derive the non-trivial ergodicity condi-
tion, calculate stationary distribution and the main performance measures of
the system. The optimization issues are discussed.

I Friday, 11:00

Some useful results for the MAP/PH/1 system with PH vacations

Attahiru Sule Alfa*

Polling systems which occur frequently in the medium access control as-
pects in communication systems are usually approximated by vacation queue-
ing models. For the MAP/PH/1 system with PH vacations the model can be
set up as QBD. Sometimes the length and type of vacation models considered
lead to huge sizes of the associated matrices R and G. With computational
focus in mind we present decomposition results associated with these ma-
trices. We show that most of the work in computing these matrices is sim-
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ply that of computing the equivalent matrices for the MAP/PH/1 system
(without vacation), and that the remaining work only involves solving linear
equations. By being able to decompose the matrices and then capitalizing on
the features of this decomposition we can considerably reduce the associated
computational efforts. We also show that these matrices can be obtained
explicitly for the Geo/PH/1 with PH type vacation. This is an extension of
the well known results by Ramaswami and Latouche (1986) for the Geo/PH/1
without vacation.

I Friday, 11:35

Matrix generalization of Erlang’s loss formula and its properties

Valeriy Naumov*

We consider loss system MAP/M/n with n servers and multi-class Marko-
vian Arrival Process. Arrival process is specified by irreducible generator ma-
trix Q and non-negative matrices R1, . . . , Rm, where matrix R = R1 + . . .+Rm

satisfies R(i, j) ≤ Q(i, j) for i 6= j. Matrices S = Q− R and Rk define arrival
process of class k calls (Latouche and Ramaswami, 1999). Service times of all
calls are exponentially distributed with parameter 1. Let p be a row vector of
the stationary probabilities of Q, 1 be a column vector of all ones, and matrices
Ψk be defined as

Ψ0 = 0, Ψk =

(
I − 1

k
(S + Ψk−1R)

)−1

, k = 1, 2, . . . .

We use properties of block generator matrices (Naumov, 2012) and show that
Ψn satisfies the following properties:

1. Ψn ≥ 0;

2. ΨnR1 ≤ n1;

3. pΨn ≤ p;

4. Time blocking probability is given by

E = p(I −Ψn)1

5. Call blocking probability for class k calls is given by

Bk =
p(I −Ψn)Rk1

pRk1
.

We also derive explicit formulas for the stationary covariance of the number of
servers occupied by calls of different classes in the infinite-server system that
processes calls lost at the primary system MAP/M/n.
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I Friday, 14:00

Loss Rates for Stochastic Fluid Models2

Małgorzata M. O’Reilly* and Zbigniew Palmowski

We introduce loss rates, a novel class of performance measures for stochas-
tic fluid models (SFMs) and discuss their applications potential. We derive
analytical expressions for loss rates and describe efficient methods for their
evaluation. Further, we study interesting asymptotic properties of loss rates
and derive explicit expressions which can be conveniently evaluated even for
systems of large size. Numerical examples are given as an illustration.

Let {(ϕ(t)), t ≥ 0} be an irreducible, positive-recurrent continuous-time
Markov Chain (CTMC) with a finite state space S = {1, 2, . . . , n} and in-
finitesimal generator T. Let {(ϕ(t), X(t)), t ≥ 0} be a Markovian stochastic
fluid model (SFM) with phase variable ϕ(t), level variableX(t), a lower bound-
ary X(t) ≥ 0, upper boundary X(t) ≤ B, and real rates ci for all i ∈ S, such
that

• When 0 < X(t) < B and ϕ(t) = i, then the rate at which the level is
changing is ci;

• When X(t) = 0 and ϕ(t) = i, then the rate at which the level is changing
is max{ci, 0}; and

• WhenX(t) = B and ϕ(t) = i, then the rate at which the level is changing
is min{ci, 0}.

We partition the set of all phases as S = S1 ∪ S2 ∪ S0, where S1 = {i ∈ S :
ci > 0}, S2 = {i ∈ S : ci < 0}, S0 = {i ∈ S : ci = 0}.

This class of models has been earlier analyzed by da Silva Soares and La-
touche, who derived the stationary distribution of the model in [1]. In this
paper, we extend the analysis to the study of other interesting performance
measures of the considered model.

Throughout assume i ∈ S1 and j ∈ S2. We introduce relative-time loss
rates, a measure of time spent at the boundary B with respect to the duration
of the busy period, as follows. Let θ(x) = inf{t > 0 : X(t) = x} be the first
passage time to level x. Define

E
θ(0)
i,j = E[θ(0) : ϕ(θ(0)) = j|ϕ(0) = i,X(0) = 0],

2This research is supported by Australian Research Council Discovery Project
DP110101663
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interpreted as the mean first passage time to level zero and doing so in phase
j, given start in level zero and phase i. Let τ(t) =

∫ t
u
I(X(u) = B)du be the

total time spent on the upper boundary B up to time t. Define

E
τ(θ(0))
i,j = E[τ(θ(0)) : ϕ(θ(0)) = j|ϕ(0) = i,X(0) = 0],

interpreted as the mean time spent at the boundary B before visiting level
zero and doing so in phase j, given start in level zero and phase i. We define
relative-time loss rate Zij by

Zi,j = E
τ(θ(0))
i,j /E

θ(0)
i,j . (2)

We note that no fluid is lost during the times when the process is at the
boundary B in some phase k with ck = 0. Consequently, we introduce the
absolute-volume loss rates, which is a measure of total fluid lost during the
busy period. Let V (t) =

∫ t
0
cϕ(u)I(X(u) = B)I(cϕ(u) > 0)du. be the total fluid

volume lost up to time t. Such loss occurs whenever the buffer X is full and
the fluid level is increasing. Define

E
V (θ(0))
i,j = E[V (θ(0)) : ϕ(θ(0)) = j|ϕ(0) = i,X(0) = 0],

interpreted as the mean total fluid volume lost at the moment of the first
return to level zero and doing so in phase j, given start in level zero and phase
i. We define absolute-volume loss rate Mij by

Mi,j = E
V (θ(0))
i,j /E

θ(0)
i,j . (3)

We also introduce relative-volume loss rates which are the measure of the
total fluid lost with respect to the total fluid that entered the buffer during
the busy period. Let W (t) =

∫ t
0
cϕ(u)I(cϕ(u) > 0)du be the total fluid volume

that went into buffer X up to time t. Define

E
W (θ(0))
i,j = E[W (θ(0)) : ϕ(θ(0)) = j|ϕ(0) = i,X(0) = 0],

interpreted as the mean total fluid that went into buffer X up to the moment
of the first return to level zero and doing so in phase j, given start in level zero
and phase i. We define relative-volume loss rate M∗

ij by

M∗
i,j = E

V (θ(0))
i,j /E

W (θ(0))
i,j . (4)

We will also analyze the asymptotics of all of the above quantities as B
tends to infinity. The goal is to qualify quickly the appropriate size of the
maximal buffer size B such that chosen loss rate is smaller than given small
threshold describing the performance of the system.
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I Friday, 14:35

Markov modulated reflecting fluid process on a multidimensional
orthant: Stability and rough asymptotics of the stationary

distribution

Masakiyo Miyazawa*

Motivated by queueing network applications, we consider a continuous-time
Markov modulated reflecting process on a nonnegative orthant of a multidi-
mensional Euclidean space. This orthant is partitioned into a boundary and
an interior, where the boundary is composed of faces which are specified by
the coordinates being vanished. This reflecting process is modulated by a
Markov chain with finitely many states. We assume that the reflecting process
is continuous and piecewise linear in time changing its direction when either
it hits the boundary or the background state is changed. We refer to it as
a Markov modulated reflecting fluid process on the nonnegative multidimen-
sional orthant, a multidimensional MMRF process for short.

This fluid process is specified by the transition matrix of the background
Markov chain and the set of direction vectors, where a direction is uniquely
determined by the background state and the current location of the reflecting
process with respect to the boundary faces or the interior. Thus, the transition
from the boundary may depend on its faces, and may be arbitrarily given.

Our primary interests are in the stability and tail asymptotics of the sta-
tionary distribution of the multidimensional MMRF process. These problems
are generally very hard to answer because of the multidimensional reflecting
structure. This may be the reason why this process has not been well studied
except for simple models such as single or tandem fluid queues. Obviously,
the process is closely related to a Markov modulated multidimensional reflect-
ing random walk. There has been some fundamental work for the reflecting
random walk without Markov modulation in the ninety. In recent years, some
new results have been and are going to be obtained for the stability as well
as the tail asymptotics. Although we can not directly use them because their
reflecting mechanism is slightly different, some ideas are still useful for the
multidimensional MMRF process.

This is the first attempt for studying the multidimensional MMRF process,
and therefore we scratch it from its definition. We may not be able to go far,
but will try to draw a grand design for solving the problems. For this, we have
the following plan. We consider a general criterion on the stability of the mul-
tidimensional MMRF process. Provided this stability is assumed, we propose
a general framework to derive rough asymptotics of the marginal stationary
distribution in an arbitrary direction. For this, we will use the convergence
domain of the moment generating function of the stationary distribution. We
also discuss some examples to see how our results work.
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